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Motivation
Uncertainty & Classification w/ Reject



Uncertainty in (Deep) Learning
● Understanding what a model does not know is essential 
● Deep learning methodologies achieve state-of-the-art performance across 

a wide variety of domains, but do not capture uncertainty
○ Cannot treat softmax output as a “true” certainty (needs calibration)
○ Uncertainty is critical in many domains!

■ Machine learning for medical diagnoses
■ Autonomous vehicles
■ Critical systems infrastructure 

● Traditional Bayesian approaches do not scale → Bayesian deep learning!

4Uncertainty in Deep Learning; Dropout as a Bayesian Approximation; etc. 

http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf
https://arxiv.org/abs/1506.02142


5A standard classifier.



6A classifier that emits a prediction and a certainty metric.



Rejection in (Deep) Learning
● How can we make use of these uncertainty estimates?

● Only label what we are certain of by introducing a rejection option

● Inherent tradeoff between error rate and rejection rate

● The problem of rejection can be formulated as

○ Given: training data {(xi, yi)}
N
i=1 and some target accuracy 1-𝜖

○ Goal: Learn a classifier C and a rejection rule r 

○ Inference: given a sample xk, reject if r(xk) < 0, otherwise classify C(x)

● Majority of work focuses on binary reject in a non-deep learning setting

7 On optimum recognition error and reject trade-off;  Learning with Rejection; Selective classification for deep neural networks

https://ieeexplore.ieee.org/document/1054406
https://ai.google/research/pubs/pub46544/
https://arxiv.org/abs/1705.08500


8A classifier that emits a prediction and a certainty metric and that supports a reject option.



9A classifier that emits a prediction and a certainty metric and that supports a reject option.
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GWIN Framework
A novel method leveraging uncertainty and generative 
networks to handle classifier rejection.
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Can we learn to map a classifier's 
uncertain distribution to 
high-confidence, correct 
representations?
Rather than simply rejecting input, can we treat the initial 
classifier as a “cheap” prediction and reformulate the 
observation if the classifier is uncertain?
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GWIN Framework
● A pretrained, certainty-based 

classifier C that emits a 
prediction and certainty

● A rejection function r that 
allows us to reject observations

● … 
A classifier that emits a prediction and a certainty metric and 

that supports a reject option.
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GWIN Framework
● A pretrained, certainty-based 

classifier C that emits a 
prediction and certainty

● A rejection function r that 
allows us to reject observations

● A conditional generative 
network G that transforms 
observations to new 
representations

The GWIN inference process for some new observation xi.
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GWIN Framework
● Used with any certainty-based 

classifier and does not modify 
the classifier structure

● Generator G learns the 
distribution of observations 
from the original data 
distribution that C labels 
correctly with high certainty

● No strong assumptions!

The GWIN inference process for some new observation xi.



15Visualization of the GWIN transformation. Items on the left are rejected with 𝜏=0.8 and transformed to “correct” representations.
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GAN Preliminaries
Quick Refresher on GANs



GANs
● Framework for estimating 

generative models using an 
adversarial network

● Contains two networks in a 
minimax-two player game:

○ Generative network G that 
captures the data distribution

○ Discriminative network D that 
estimates the source of a sample

17Generative Adversarial Networks

https://arxiv.org/abs/1406.2661


Wasserstein GANs
● It is well known that GANs suffer from training instability:

○ mode collapse
○ non-convergence
○ diminishing gradient

● WGAN w/Earth-Mover distance:

● WGAN with gradient penalty (WGAN-GP) further builds on this work, 
providing a final objective function with desirable properties:

18Towards Principled Methods for Training Generative Adversarial Networks; Wasserstein GANs; Improved Training of Wasserstein GANs

https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028


Conditional GANs
● Extends the standard GAN to a 

conditional model by supplying 
extra information to both the 
critic and the generator

● Many different methods for 
conditioning:
○ Input concatenation
○ Hidden concatenation
○ Auxiliary classifiers
○ Projection
○ … 

19Conditional Generative Adversarial Nets; cGANs with Projection Discriminator; Generative Adversarial Text to Image Synthesis

https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1802.05637
https://arxiv.org/abs/1605.05396
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Wasserstein GWIN
A Simple GWIN Architecture



Wasserstein GWIN (WGWIN-GP)
● Classifier: Bayesian Neural Network

○ Two architectures: LeNet-5 and “Improved”
○ Estimate uncertainty estimates using Monte Carlo sampling

● Reject Function: 𝜏-based rejection rule

● Generative Network: Wasserstein GWIN (WGWIN-GP)
○ Based on Wasstein GAN with gradient penalty (WGAN-GP)
○ Modified loss function (transformation penalty)
○ Critic is trained on the “certain + correct” distribution
○ Conditional critic and generator

21



22

BNN Classifiers
● Evaluate two architectures:

○ LeNet-5 BNN
○ “Improved” BNN (BN, dropout, …)

● Minimize ELBO loss

● Estimate model uncertainty 
using Monte Carlo sampling:
○ Determine the log probability of 

the observation given the training 
set by averaging draws 

○ Look at mean / median of probs

Visualization of the BNN’s certainty estimation.

A diagram of the LeNet-5 architecture.
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Rejection Function
● Simple threshold-based 

rejection function 

● Give some rejection bound 𝜏: 

● Choice of 𝜏 is made at 
inference and can be tuned

Visualization of the BNN’s certainty estimation.

A diagram of the LeNet-5 architecture.
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The generator training pipeline (w/out penalty lambda).

WGWIN-GP
● Architecture of the critic and 

generator follow WGAN-GP

● Add conditioning to both the 
critic and the generator:
○ The class label is depth-wise 

concatenated to the input and 
hidden layers of the critic

○ The current observation is 
flattened, concatenated with the 
noise vector, and passed to the 
generator

● Critic: trained on “certain” subset

The critic’s training pipeline (w/out gradient penalty).



WGWIN-GP Loss Function
● Introduces a new loss function with a Transformation Penalty

● This penalty penalizes the generator if it produces images that do not 
improve classifier performance:

● In practice, we find λGP = λLOSS = 10 to work well  

25



26WGWIN-GP Training Algorithm
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Results & Discussion
LeNet-5 and “Improved” BNN + WGWIN-GP



Experimental Design
● Classifiers: LeNet-5 and “Improved” BNN

● Generator: WGWIN-GP

● Rejection: 𝜏-based rejection rule
○ 𝜏 ∈ { 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99 }
○ Reject inputs transformed once and then relabled

● Datasets: MNIST Digits and MNIST Fashion
○ Train: 50k
○ Eval: 10k
○ Test: 10k
○ Confident set built from train data

28MNIST Digits; Fashion MNIST

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist


Change in LeNet-5 accuracy on the rejected subset for varying rejection rates 𝜏. BNN denotes standard BNN 
performance while BNN+GWN denotes the classifier’s performance on transformed images. % Rejected denotes the % 

of observations rejected by the classifier. 
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Change in Improved BNN accuracy on the rejected subset for varying rejection rates 𝜏. BNN denotes standard 
BNN performance while BNN+GWN denotes the classifier’s performance on transformed images. % Rejected denotes 

the % of observations rejected by the classifier. 
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Change in LeNet-5 accuracy on the test set for varying rejection rates 𝜏. BNN denotes standard BNN performance, 
BNN+GWN denotes the classifier’s performance on transformed, rejected images, and BNN w/Reject denotes the 

classifier’s performance with a “reject” option (not required to label). 



32

Change in Improved BNN accuracy on the test set for varying rejection rates 𝜏. BNN denotes standard BNN 
performance, BNN+GWN denotes the classifier’s performance on transformed, rejected images, and BNN w/Reject 

denotes the classifier’s performance with a “reject” option (not required to label). 
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Change in LeNet-5 certainty for the ground-truth class in the rejected subset for varying rejection rates 𝜏. 
Outliers are those values that fall outside of 1.5IQR and are denoted with diamonds.
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Change in Improved BNN certainty for the ground-truth class in the rejected subset for varying rejection rates 
𝜏. Outliers are those values that fall outside of 1.5IQR and are denoted with diamonds.



Discussion
● BNN+GWIN performance is consistently better than the BNN at most 

certainty thresholds; addition of transformation, without modifying the 
base classifier, improves performance on uncertain observations.

● The GWIN transformation increases certainty in the correct class in the 
majority of classes; tradeoff between rejection threshold and accuracy.

● We see gains in rejected subset accuracy, but these gains do not have a 
large impact on overall accuracy if the rejected subset is small

35
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Related Work
A comparison with denoising and robustness methods



Denoising and Robustness Methods
● Network distillation: trains a classifier such that it is nearly impossible to 

generate adversarial examples using gradient-based attacks. 
● Data augmentation

○ Adversarial training
○ Hallucination methods
○ ...

● Defense using generative models:
○ MagNet: a Two-Pronged Defense against Adversarial Examples
○ Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models

37

https://arxiv.org/abs/1511.04508
https://arxiv.org/abs/1705.09064
https://arxiv.org/abs/1805.06605


MagNet
● Does not modify protected classifier
● MagNet consists of two core 

components:
○ a detector that rejects examples that 

are far from the manifold boundary
○ a reformer that, given an example x, 

strives to find an example x′ on or close 
to the manifold where x′ is a close 
approximation to x, and then gives x′ to 
the target classifier

● Uses autoencoders rather than GANs
● Use a series of detectors; select one at 

random to increase robustness of 
model

38

MagNet workflow in test phase. MagNet includes
one or more detectors. It considers a test example x adversarial 

if any detector considers x adversarial. If x is not considered 
adversarial, MagNet reforms it before feeding it to

the target classifier



Defense-GAN
● Does not modify protected classifier and 

makes weaker assumptions about the 
classifier than GWINs

● Defense-GAN aims to denoise 
adversarial examples by projecting 
images back to the real data set while 
minimizing reconstruction loss

● Defense-GAN preprocesses all input to 
the classifier, incurring a larger 
transformation cost

● Only used in the context of defense 
from adversarial attacks

39

Overview of the Defense-GAN algorithm.



Conclusions and Future Work
● Proposed a new framework for leveraging uncertainty and generative 

networks to handle classifier rejection

● Showed that this works with a very simple proof of concept (WGWIN-GP)

● Next steps:
○ Encourage mode collapse for high-certainty representations?
○ Iterative transformation process
○ Explore other, more powerful GWIN architectures

■ Principled classification with reject?
■ Variational autoencoders?
■ Larger networks, different conditioning methods?

40
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