
Goal

Empirically evaluate the robustness of ML-based 
phenotyping to varying levels of label noise.

Motivation

ML-based phenotyping, in which an ML model is applied 
to high dimensional clinical data to predict a target 
phenotype, enables fast and accurate phenotyping at 
biobank scales. Though recent work demonstrates the 
application of this method to low quality labels, it has not 
been possible to quantify changes in genetic association 
power since the underlying ground-truth liability scores 
for complex, polygenic diseases remain unknown. To 
address this challenge, we corrupt a continuous 
phenotype using varying levels of noise and study 
changes in discovery.

Introduction

Table 1: ML-based phenotyping recovers the underlying liability score across noise levels, significantly improving 
genetic discovery and PRS predictive power relative to noisy equivalents.

ML Noisy R and ML Clean R denote Pearson's correlation between labels or model predictions and the target noisy or 
ground-truth labels. NCP denotes the non-centrality parameter, a proxy for GWAS power. Replication % captures the percent 
of ground-truth GWS hits replicated. PRS Euro R and PRS Non-Euro R denote the correlation between PRS scores in the 
European holdout set (n=1,472) and the non-European validation set (n=10,095).
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Figure 2: An overview of the ML-based phenotype denoising procedure. 
The training process for the a) clean, b) noisy, and c) denoised VCDR models. We d) applied each model to UK Biobank fundus 
imagery and used the liability scores for genomic discovery.

Results Conclusion
Takeaways

● Standard ML-based phenotyping approaches successfully recover underlying liability scores given corrupted labels.
● ML-based phenotyping significantly improves PRS predictive power relative to both the ground-truth and noisy GWAS.
● Our SNVC-based denoising method shows promising initial results for integrated approaches.

Future Directions

● Extending this analysis to the binary label setting to better mirror the nature of the EHRs often found in biobanks
● Evaluating other noise distributions (e.g., structured noise) to better understand the impact of systematic dataset bias
● Further improving integrated denoising methods

Resources

bioRxiv preprint: biorxiv.org/content/10.1101/2022.11.17.516907v1
Open source code: github.com/Google-Health/genomics-research/tree/main/ml-based-vcdr

References

Alipanahi et al., “Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve 
head morphology,” AJHG  2021.
Cosentino et al., “Leveraging deep-learning on raw spirograms to improve genetic understanding and risk scoring of COPD 
despite noisy labels,” bioRxiv  2022.

Figure 1: ML-based phenotyping is robust label corruption.

Highlights

● We simulate label corruption by applying varying levels of random noise to vertical cup-to-disc ratio (VCDR).
● We show that the standard ML-based phenotyping procedure is reasonably robust across noise levels.
● We propose an integrated denoising approach to the ML-based phenotyping procedure.
● We evaluate the impact of noise on downstream genomic discovery and polygenic risk score performance.
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