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Motivation

Representing uncertainty is crucial across a variety of domains, such
as autonomous vehicles, medical diagnoses, and anomaly detection
Uncertain, incorrect labelling can result in costly errors and at times it
is better to abstain from or reject a query rather thanmake amistake
Many rejection-based algorithms do not offer insights on how to
reevaluate uncertain inputs to increase confidence and generate
fewer rejections in the future

Generative Well-intentioned Networks

The GWIN framework includes three core components:

1. A pretrained, certainty-based classifier C that emits a prediction y′
i

with certainty ci when labeling a new observation xi

2. A rejection function r : {(c, y′)} → {reject, y′} that allows the
classifier to reject an instance rather than predicting its label

3. A conditional generative network G that transforms an observation
xi and noise vector z to a new representation x′

i

Wasserstein GWINwith Gradient Penalty

Wepresent an implementation of this framework: theWassersteinGWIN.

Classifier and Reject Function

We experiment with two classifiers: a simple LeNet-5 Bayesian neural
network and an Improved BNN with a more complicated architecture.
We use Monte-carlomethods to sample from the networks and generate
predictive probabilities.

We use a simple reject rule for each (y′
i, ci) pair and a rejection bound τ :

r(ci, y′
i) =

y′
i, if ci ≥ τ

reject, otherwise.
(1)

Wasserstein GWINwith Gradient Penalty (WGWIN-GP)

The Wasserstein GWIN is based on the Wasserstein GAN with Gradient
Penalty (WGAN-GP) [1]. The WGWIN’s generator and critic are condi-
tioned on the input image [2] and the class label [3], respectively. We
modify the generator’s loss function to take into account the classifier’s
loss on the transformed observations. The critic is only trained on high-
certainty images that the classifier labels correctly.

Loss with Transformation Penalty

ThenewWGWIN-GP loss functionbuildson topof theWGAN-GP loss func-
tion and penalizes decreases in classifier loss due toWGWIN-GP transfor-
mation:

L = E
x′∼Pg

[D(x′, y)] − E
x∼Pc

[D(x, y)]︸ ︷︷ ︸
WGAN Loss

+ λGP E
x̂∼Px̂

[(||∇x̂D(x̂, y)||2 − 1)2]︸ ︷︷ ︸
WGAN-GP Penalty

+ λLoss E
x′∼Pg

[Loss(C(x′))]︸ ︷︷ ︸
Transformation Penalty

(2)

where Loss(C(x′))denotes the classifier’s loss given the transformed im-
age and the correct class.

TL;DR

We propose GWINs, a novel framework combining a fixed, certainty-based classifierwith
a reject option and a conditional generative network.

The conditional generative network learns the distribution of observations that the classifier
labels correctly and with high certainty.

During inference, the classifier can reject uncertain observations. The generative network
transforms low-certainty queries rejected by the classifier to high-certainty representations
that are then relabeled by the classifier.

The capability of aWassersteinGAN (WGAN)-basedproof of concept is assessedusing bench-
mark classification datasets and shows that GWINs improve, and rarelyworsen, the accuracy
of rejected image classification.
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Figure 1. The inference process for some new observation xi. If classifier C labels the input y′
i with certainty ci and rejects the query, the

conditional GWIN translates the given query to the classifier’s confident distribution. The transformed query x′
i is then relabeled.
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Figure 2. A visual representation of the GWIN transformation using example images from the MNIST Digits dataset. With a certainty
threshold of τ = 0.8, the classifier rejects the observations on the left, which would had been labeled incorrectly were the classifier forced
to predict. These observations are then transformed into the representations on the right. When relabeling the generated images, the
classifier labels correctly with high-certainty.

Experimental and Results

(a) Rejected subset accuracy (Digits) (b) Overall test set accuracy (Digits)

(c) Rejected subset accuracy (Fashion) (d) Overall test set accuracy (Fashion)

Figure 3. Test set accuracy for MNIST Digits and Fashion using GWIN transformation for
varying certainty thresholds τ .

τ %Reject BNN Acc. BNN+GWIN Acc. Rejected Acc. ∆ Overall Acc. ∆ %Error ∆
0.70 1.83 54.48 ± 2.21 85.07 ± 2.63 30.59 ± 2.64 0.56 ± 0.06 −27.55 ± 2.66
0.80 2.74 58.91 ± 1.49 86.30 ± 1.85 27.39 ± 2.03 0.75 ± 0.06 −36.36 ± 1.93
0.90 4.39 68.79 ± 2.38 86.95 ± 0.97 18.16 ± 2.55 0.80 ± 0.13 −40.26 ± 4.19
0.95 6.04 73.48 ± 1.66 89.34 ± 0.85 15.86 ± 2.07 0.96 ± 0.13 −47.45 ± 4.09
0.99 11.00 83.54 ± 0.88 92.55 ± 0.49 9.02 ± 0.94 0.99 ± 0.10 −49.45 ± 3.16
0.70 15.25 52.08 ± 1.55 66.95 ± 0.67 14.87 ± 1.78 2.27 ± 0.30 −18.08 ± 1.98
0.80 21.21 57.87 ± 0.89 69.16 ± 0.47 11.29 ± 0.87 2.39 ± 0.19 −19.25 ± 1.32
0.90 30.29 64.14 ± 0.66 73.18 ± 0.73 9.04 ± 0.83 2.74 ± 0.29 −21.63 ± 1.85
0.95 37.30 68.93 ± 0.49 76.06 ± 0.43 7.14 ± 0.61 2.66 ± 0.25 −21.15 ± 1.61
0.99 51.97 76.55 ± 0.30 81.34 ± 0.26 4.79 ± 0.34 2.49 ± 0.19 −19.94 ± 1.30

Table 1. Test set accuracy for MNIST Digits (top) and Fashion (bottom) on rejected
observations using GWIN transformation for the given certainty threshold τ . BNN and
BNN+GWIN denote accuracy for the rejected subset using only the BNN and the BNN
with GWIN reformulation, respectively. With no rejections (τ = 0), the BNN had an
accuracy of 98.0% on Digits and 87.4% on Fashion.

Conclusions

GWINs show potential for improving rejection-based classifier accuracy
using certainty estimates. Since the rejected sample size is small rela-
tive to all possible queries, wemust improve accuracywhen the rejection
bound τ is very high. Ask about future work!
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